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1 INTRODUCTION 
 
Actinide physics has seen a remarkable focus the last decade or so due to the combination 
of improved experimental diamond-anvil-cell techniques and the development of fast 
computers and more advanced theory. All f-electron systems are expected to have 
multiphase phase diagrams due to the sensitivity of the f-electron band to external 
influences such as pressure and temperature. For instance, compression of an f-electron 
metal generally causes the occupation of f-states to change due to the shift of these bands 
relative to others. This can in some cases, as in the Ce-Th system, cause the crystal to 
adopt a lower symmetry structure at elevated pressures. Here we study the phase stabilities 
of Ce, Th, and the Ce-Th system as a function of compression. Theoretically, both Ce and 
Th metals are rather well described within the DFT,1 although a proper treatment of the 
Ce-Th alloys has not yet been presented.2 In the present paper we revisit this problem by 
applying the modern theory of random alloys based on the coherent potential 
approximation (CPA). 
 
 

2 COMPUTATIONAL DETAILS 
 
The calculations we have referred to as exact muffin-tin orbitals (EMTO) are performed 
using a full-relativistic Green’s function technique based on an improved screened KKR 
method, where the one-electron potential is represented by optimized overlapping muffin-
tin (OOMP) potential spheres3. Within the EMTO formalism, the one-electron states are 
calculated exactly for the OOMT potentials. For the exchange/correlation approximation, 
we use the generalized gradient approximation. For the total energy of random 
substitutional alloys, the EMTO method has recently been combined with the CPA.3 
 
 
 3 RESULTS 
 
In Figures 1 and 2 we plot the calculated c/a ratio for bct Ce and Th, respectively. Present 
results agree well with experimental data4,5 as well as with those of previous FPLMTO 



 

 

calculations1.  Figure 3 shows the calculated (EMTO) and measured6,7 c/a ratios for the 
Ce43Th57 alloy. The results of previous FPLMTO calculations2 are also presented. 

 

 
 

Figure 1 The c/a axial ratio for the bct structure as a function of pressure for Ce. 
Experimental data (Ref. 4) are marked with open squares while theoretical 
results are given by a solid line and filled circles. The results of FPLMTO 
calculations (Ref. 1) are shown by a solid line and open circles. 

  

 
 

Figure 2 The c/a axial ratio for the bct structure as a function of pressure for Th. 
Experimental data (Ref. 5) are marked with open squares while theoretical 
results are given by a solid line and filled circles. The results of FPLMTO 
calculations (Ref. 1) are shown by a solid line and open circles. 



 

 

 
 

Figure 3 The c/a axial ratio for the bct structure as a function of pressure for Ce43Th57 
disordered alloy. Experimental data (Ref. 6, 7) are marked with open squares 
while EMTO theoretical results are given by a solid line and filled circles. 
Also, the results of FPLMTO calculations (Ref. 2) for Ce-Th-ordered (B2) 
compound are given by a solid line and open circles. 

 
 

3 CONCLUSION 
 
We have presented accurate electronic-structure calculations for the Ce-Th system. 
Generally, the theory reproduced experimental data very well. For the Ce43Th57 disordered 
alloy a CPA treatment is necessary to reproduce the correct structural behaviour. 
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